Joint mmWave Radar and Communication


Millimeter Wave Vehicular Communication-Radar

Surface transportation safety can be enhanced by the use of wireless technologies, mainly automotive radar and vehicle-vehicle (V2V) communication. Automotive radar provides a high-resolution low-latency approach for a continuous automatic detection and ranging of both, communication-enabled and non-communication-enabled transportation users. V2V systems rely on the collaborative communication between vehicles to achieve a real-time cooperative detection and ranging. They can operate beyond the line-of-sight constraints of radar solutions. Combining both these wireless technologies would provide a hybrid detection and ranging application that would benefit from mutual sharing of information between radar and communication using the same frequency band and hardware resources. Furthermore, using mmWave band will provide a high data rate for communication and better accuracy & resolution for radar operation. This will enable automotive safety applications to simultaneously achieve ultra-low latency and high range of operation, with advantages of reduced cost, size, better performance and efficient spectrum usage for the vehicles of tomorrow. In the past half-decade, a number of joint communication-radar approaches have been considered, which exploits the existing radar/communication waveforms that are usually ad-hoc designed and is not completely integrated as they rely on time, frequency or code division ideas.

Recent Results

We have leveraged the use of a mmWave consumer wireless local area network (WLAN) standard to develop a combined vehicular communication-radar waveform. In particular, we have exploited the use of the special structure (repeated Golay complementary sequences) of the single carrier preamble in IEEE 802.11ad to develop a joint framework of long range automotive radar (LRR) and vehicle-to-vehicle communication (V2V) at 60 GHz. This framework leverages the signal processing algorithms used in the typical WLAN receiver, for e.g., carrier frequency offset estimation and channel estimation for radar parameter estimation. Our initial results show that the IEEE 802.11ad waveform works well for radar.

Select Publications

Preeti Kumari, Nuria Gonz├ílez Prelcic and “Investigating the IEEE 802.11ad Standard for Millimeter Wave Automotive Radar,” IEEE Vehicular Technology Conference (VTC 2015-Fall) , Boston, 2015. (Presentation video)

This research was partially supported by the U.S. Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center and by the Texas Department of Transportation under Project 0-6877 entitled Communications and Radar-Supported Transportation Operations and Planning (CAR-STOP).

Comments are closed.